К вопросу о решеточной составляющей коэффициента теплопроводности наночастиц фрактальной формы

Авторы

  • А. В. Шишулин
  • А. А. Потапов
  • А. В. Шишулина

DOI:

https://doi.org/10.31489/2022No3/10-17

Ключевые слова:

термоэлектрические материалы, теплопроводность, наночастицы, фононы, фрактальная размерность

Аннотация

Использование аддитивных технологий для получения объемных наноструктурированных материалов из наночастиц является одним из наиболее перспективных направлений создания эффективных и коммерчески доступных термоэлектрических преобразователей энергии. Наноструктурирование позволяет осуществлять выборочную модификацию транспортных свойств, определяющих термоэлектрическую материала. В настоящей работе представлен еще один эффект, заключающийся в существенной зависимости вклада колебаний кристаллической решетки (практически требуется его уменьшение) в коэффициент теплопроводности наночастицы чистого вещества от ее морфологии. Морфология наночастицы задавалась величинами ее эффективного диаметра, фрактальной размерности и шероховатости поверхности. На примере наночастиц чистого висмута при низких температурах продемонстрировано существенное понижение теплопроводности решетки при «усложнении» морфологии частицы. В заключительной части работы представлены методы расчета ряда характеристик ансамблей наночастиц, а также обсуждается методика экспериментального определения фрактальной размерности.

Биографии авторов

А. В. Шишулин

Master (Sci.), Junior Researcher, Pleiades Publ., Ltd, Moscow, Russia. Scopus AuthorID: 57191571862; ORCID: 0000-0003-2370-5313

А. А. Потапов

Doctor of phys.-math. sciences, Professor, Chief researcher, V.A. Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of sciences, Moscow, Russia; IREE joint laboratory of fractal method & signal processing, Jinan University, Guangzhou, China. Scopus AuthorID: 56375460400, 56375460400; ORCID: 0000-0001-9864-3546

А. В. Шишулина

PhD, Associate Professor, R.E. Alekseev Nizhny Novgorod State Technical University, Nizhny Novgorod, Russia; N.I. Lobachevsky Nizhny Novgorod State University, Nizhny Novgorod, Russia. Scopus AuthorID: 6602952373

Библиографические ссылки

Rowe D.M. (ed.) Thermoelectric handbook macro to nano. Boca Raton, CRC Press. 2006. 1008 p.

Tambasov I.A., Voronin A.S., Evsevskaya N.P., et al. Thermoelectric properties of low-cost cost

transparent single wall carbon nanotube thin films obtained by vacuum filtration. Phys E. 2019. Vol. 114. 113619.

https://doi.org/10.1016/j.physe.2019.113619.

Hu J.-Z., Liu B., Zhou J., et al. Enhanced thermoelectric cooling performance with

graded thermoelectric materials. Jpn. j. appl. phys. 2018. Vol. 57, pp. 71801 – 71806.

www.doi.org/10.7567/JJAP.57.071801.

Li Z., Miao N., Zhou J., et al. High thermoelectric performance of few-quintuple Sb2Te3 nanofilms. Nano

energy. 2018. Vol. 43, pp. 285 – 290. www.doi.org/10.1016/j.nanoen.2017.11.043.

Erofeeva I.V., Dorokhin M.V., Lesnikov V.P., et al. Thermoelectric effects in nanoscale layers of manganese

silicide. Semiconductors. 2017. Vol. 51, No. 11, pp. 1403 – 1408. www.doi.org/10.1134/S1063782617110112.

Caballero-Calero O., Martín-González M. Thermoelectric nanowires: A brief prospective.Scripta mater. 2016.

Vol. 111, pp. 54 – 57. www.doi.org/10.1016/j.scriptamat.2015.04.020.

Dorokhin M.V., Erofeeva I.V., Kuznetsov Yu.M., et al. Investigation of the initial stages of spark-plasma

siltering of Si-Ge-based thermoelectric materials. Nanosyst.: phys., chem., math. 2018. Vol. 9, No. 5, pp. 622 – 630.

www.doi.org/10.17586/2220-8054-2018-9-5-622-630.

Kuznetsov Yu.M., Bastrakova M., Dorokhin M.V., et al. Molecular dynamics studies on spark-plasma

sintering of Si-Ge-based thermoelectric materials. AIP adv. 2020. Vol.10, No.6, 065219.

https://doi.org/10.1063/5.0011740.

Bulat L.P., Drabkin I.A., Karatayev V.V., et al. Effect of boundary scattering on the thermal conductivity of a

nanosctructured semiconductor material based on the BixSb2-xTe3 solid solution. Phys. solid state. 2010. Vol. 52, No. 9,

pp. 1836 – 1841. https://doi.org/10.1134/S1063783410090088.

Shishulin A.V., Fedoseev V.B., Shishulina A.V. Phonon thermal conductivity and phase equilibria of fractal

Bi-Sb nanoparticles. Tech. phys. 2019. Vol. 64, No. 4, pp. 512 – 517. www.doi.org/10.1134/S1063784219040200.

Shishulin A.V., Potapov A.A., Shishulina A.V. Fractal nanoparticles of phase-separating solid solutions:

nanoscale effects on phase equilibria, thermal conductivity, thermoelectric performance. 14th Chaotic modeling and

simulation, Springer proceedings in complexity. www.doi.org/10.1007/978-3-030-96964-6_30.

Fedoseev V.B., Shishulin A.V. Shape effect in layering of solid solutions in small volume: bismuth-antimony

alloy. Phys. solid state. 2018. Vol. 60, No. 7, pp. 1398 – 1404. www.doi.org/10.1134/S1063783418070120.

Lee S., Esfarjani K., Mendoza J., et al. Lattice thermal conductivity of Bi, Sb, and Bi-Sb alloy from first

principles. Phys. rev. B. 2014. Vol. 89, pp. 85206 – 85215. www.doi.org/10.1103/PhysRevB.89.085206.

Shishulin A.V., Fedoseev V.B.Stratifying polymer solutions in microsized pores: phase transitions induced by

deformation of a porous material. Tech. phys. 2020. Vol.65, No.3, pp. 340 – 346.

www.doi.org/10.1134/S1063784220030238.

Shishulin A.V., Fedoseev V.B. Thermal stability and phase composition of stratifying polymer solutions in

small-volume droplets. J. eng. phys. thermophys. 2020. Vol. 93, No. 4, pp. 802 – 809. www.doi.org/10.1007/s10891-

-02182-9.

Shishulin A.V., Fedoseev V.B.Features of the influence of the initial composition of organic stratifying

mixtures in microsized pores on the mutual solubility of components. Tech. phys. lett. 2020.

Vol. 46, No. 9, pp. 938 – 941. www.doi.org/10.1134/S1063785020090291.

Geoffrion L.-D., Guisbiers G. Chemical ordering in Bi1-xSbx nanostructures: alloy, janus or core-shell. J. phys.

chem. C. 2020. Vol. 124, No.25, pp. 14061 – 14068. www.doi.org/10.1021/acs.jpcc.0c04356.

Guisbiers G. Advances in thermodynamic modeling of nanoparticles. Adv. phys. X. 2019. Vol. 4, No. 1,

www.doi.org/10.1080/23746149.2019.1668299

Hill T.L. Thermodynamics of small systems. Parts 1 & 2. Mineola, New York, Dover Publications.

416 p.

Qi W.H., Wang M.P. Size and shape-dependent melting temperature of metallic nanoparticles. Mater. chem.

phys. 2004. Vol. 88, pp. 280 – 284. www.doi.org/10.1016/j.matchemphys.2004.04.026.

Rose J.H., Ferrante J., Smith J.R. Universal features of bonding in metals. Phys. rev. B. 1983.

Vol. 28, No. 4, pp. 1835 – 1845. https://doi.org/10.1103/PhysRevB.28.1835.

Guinea F., Rose J.H., Smith J.R. et al. Scaling relations in the equation of state, thermal expansion and

melting of metals. Appl. phys. lett. 1984. Vol. 44, pp. 53 – 55. https://doi.org/10.1063/1.94549.

Fedoseev V.B., Potapov A.A., Shishulin A.V., Fedoseeva E.N. Size and shape effect on the phase transitions in

a small system with fractal interphase boundaries. Eurasian phys. tech. j. 2017. Vol. 14, No.1, pp. 18 – 24.

Shishulin A.V., Fedoseev V.B. Peculiarities of phase transformations of polymer solutions in deformable

porous matrices. Tech. phys. lett. 2019. Vol. 45, No. 7, pp. 697 – 699. https://doi.org/10.1134/S1063785019070289.

Potapov A.A. On fractal dimension spectrum of new lightning discharge types in ionosphere: elves, jets and

sprites. Eurasian phys. tech. j. 2016. Vol. 13, No. 2, pp. 5 – 11.

Shishulin A.V., Fedoseev V.B. On some peculiarities of stratification of liquid solutions within pores of fractal

shape. J. mol. liq. 2019. Vol. 278, pp. 363 – 367. www.doi.org/10.1016/j.molliq.2019.01.050.

Shishulin A.V., Fedoseev V.B., Shishulina A.V. Melting behavior of fractal-shaped nanoparticles (the example

of Si-Ge system). Tech. phys. 2019. Vol. 64, No. 9, pp. 1343 – 1349. https://doi.org/10.1134/S1063784219090172.

Potapov A.A. On the issues of fractal radio electronics: Processing of multidimensional signals, radiolocation,

nanotechnology, radio engineering elements and sensors. Eurasian phys. tech. j. 2018. Vol. 15, No. 2, pp. 5 – 15.

Vopson M.M., Rogers N., Hepburn I. The generalized Lindemann melting coefficient. Solid state commun.

Vol. 218. 113977. www.doi.org/10.1016/j.ssc.2020.113977.

Post E.J. On the characteristic temperatures of single crystals and the dispersion of “Debye heat waves”. Can.

j. phys. 1953. Vol. 31, No. 1, pp. 112 – 119. https://doi.org/10.1139/p53-010.

Regal A.R., Glazov V.M. Entropy of melting of semiconductors. Semiconductors. 1995. Vol. 29, No. 5,

pp. 405 – 417.

Magomedov M.N. On the statistical thermodynamics of a free-standing nanocrystal: silicon. Cryst. rep. 2017.

Vol. 63, No. 3, 480 – 496. https://doi.org/10.1134/S1063774517030142.

Zimann J.M. Electrons and phonons. Oxford, Clarendon Press. 1960. pp. 58, 288, 396, 456.

Soyez G., Eastman J.A., Thompson L.J. et al. Grain-size-dependent thermal conductivity of nanocrystalline

yttria-stabilized zirconia films grown by metal-organic chemical vapor deposition. Appl. phys. lett. 2000. Vol. 77, No.

, pp. 1155 – 1157. https://doi.org/10.1063/1.1289803.

Khvesyuk V.I. Skryabin A.S. Heat conduction in nanostructures. High temp. 2017. Vol. 55, No. 3, pp. 434 –

https://doi.org/10.1134/S0018151X17030129.

Goyal M. Shape, size and phonon scattering effect on the thermal conductivity of nanostructures. Pramana: j.

phys. 2018. Vol. 91, pp.87. www.doi.org/10.1007/s12043-018-1660-8.

Fedoseev V.B. The use of fractal geometry for the thermodynamic description of the free-dimensional crystal

structure elements. Lett. mater. 2012. Vol. 2, pp. 78 – 83.

Shishulin A.V., Fedoseev V.B., Shishulina A.V. Variation of the Curie temperature in porous materials. Tech.

phys. lett. 2020. Vol. 46, No. 7, pp. 680 – 682. https://doi.org/10.1134/S106378502007024X.

Shishulin A.V., Potapov A.A., Shishulina A.V. On the transition between ferromagnetic and paramagnetic

states in mesoporous materials with fractal morphology. Eurasian phys. tech. j. 2021. Vol. 18, No.2, pp. 6 – 11.

https://doi.org/10.31489/2021NO2/6-11.

Fedoseev V.B., Shishulin A.V. On the size distribution of dispersed fractal particles. Tech. phys. 2021. Vol. 66,

No. 1, pp. 34 – 40. www.doi.org/10.1134/S1063784221010072.

Shishulin A.V., Potapov A.A., Shishulina A.V. The initial composition as an additional parameter determining

the melting behavior of nanoparticles (a case study on Six-Ge1-x alloys). Eurasian phys. tech. j. 2021. Vol. 18, No.4,

pp. 5 – 13. https://doi.org/10.31489/2021NO4/5-14.

Potapov A.A., Pakhomov A.A., Potapov A.A. (Jr.), Potapov V.A. Processing by robust fractal-topological

methods of flows of optical texture images on the Martian surface. Eurasian phys. tech. j. 2019. Vol. 16, No.2, pp. 5 – 10. https://doi.org/10.31489/2019NO2/5-10.

Li J., Du Q., Sun C. An improved box-counting method for image fractal dimension estimation Pattern

recognit. 2009. Vol. 42, pp. 2460 – 2469. www.doi.org/10.1016/j.patcog.2009.03.001.

Fedoseeva E.N., Fedoseev V.B. Interaction of chitosan with benzoic acid in solution and films. Polymer sci.

Ser. A. 2011. Vol. 53, No. 11, pp. 1040 – 1046. https://doi.org/10.1134/S0965545X1110004X.

Загрузки

Как цитировать

Шишулин A., Потапов A. A., & Шишулина A. (2022). К вопросу о решеточной составляющей коэффициента теплопроводности наночастиц фрактальной формы. Eurasian Physical Technical Journal, 19(3(41), 10–17. https://doi.org/10.31489/2022No3/10-17

Выпуск

Раздел

Материаловедение